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We investigate the effect of wormholes on gravitons. We obtain the two-point function for
gravitons in asymptotically flat space in the presence of a wormhole. We show that this result can
be reproduced in the theory of gravitons in flat space by the first-order contribution to the

propagator due to an effective interaction of the form C,,,,C***?. In the linear approximation

to pure gravity there are no wormhole-induced corrections to the cosmological constant or to
Newton’s constant.

1. Introduction

There has been interest in the possibility of change of topology in quantum
gravity for a long time [1]. Quantum mechanics might allow not only fluctuations in
the metric of space-time but also in its topology. Motivated by the success of
euclidean path integral techniques in discussions of black hole thermodynamics,
Hawking [2] suggested that the formation and evaporation of tiny black holes could
be described in that approach by a certain sort of topology change involving baby
universes and wormholes. Baby universes are little closed universes (three-surfaces)
branching off our large, asymptotically flat universe and wormholes are their
four-dimensional histories.

It has been claimed that the effect of wormholes is to cause effective interac-
tions between low-energy fields in flat space-time [2,3). This is of great interest
because these changes of topology therefore modify the coupling constants of any
fundamental theory and thus may hinder their predictions. They could contribute
to an incertitude over and above that due to the Heisenberg uncertainty principle
[2,4]. Moreover, it has been suggested that this mechanism which modifies the
coupling constants could explain why the cosmological constant vanishes [5].
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The validity of the wormhole scheme has been challenged by workers (e.g. refs.
[Sa,5b]) who point out, amongst other things, that the euclidean path integral
approach to quantum gravity has many problems and question the emphasis placed
on instanton solutions rather than all wormhole-type geometries. Even within the
euclidean path integral formalism the justification for using semiclassical methods
seems weak, since, for pure gravity, the dominant contribution comes from
wormholes of Planck size whose action is O(#), just the point where it is expected
that the differentiable manifold description of space-time will break down. We will
not address these problems in this paper, whilst admitting them to be important.
We merely make the assumption that there exists a typical wormhole size which is
a few orders of magnitude greater than the Planck length, in order that we may use
semiclassical approximations.

Hawking [2] has predicted that the effect of wormholes on a conformally
invariant scalar field will give rise to all possible local effective interactions. Lyons
[6] studied the case of a spin-3 field and Dowker [7] spin-1. The form of the
effective interactions is restricted by the conservation of local charges but not
global ones. The purpose of this paper is to-extend these results to the spin-2 case.
We study pure Einstein gravity and show that gravitons going down wormholes will
induce an effective interaction of the type C,,,,C*"*?. It is important to notice
that there is no correction to the cosmological constant nor to the coefficient of
the Ricci scalar curvature R.

At first glance, it is easy to see why only an interaction with four derivatives
appears. In R* — S* (euclidean space with a baby universe at its inner boundary),
the lowest graviton mode varies as one over the fourth power of the distance to the
baby universe. Thus the Green function behaves as o [d*x 1/((y, —x)*(y, —x)*)
and can only be reproduced by a four-derivative interaction. All other modes decay
even faster and have effective interactions with larger numbers of derivatives. In
fact it is straightforward to show that the effect of the n = 3 inhomogeneous modes
of a conformal scalar field going down a wormhole will be reproduced by an
effective interaction of the form (O ¢)? (it is a simple generalisation of the result
of Dowker [7], sect. 5). For the graviton case however, the most general covariant
second-derivative term that might occur is aR? + BR,, R* and it is not a priori
obvious which linear combination (i.e. which ratio a/g8) will produce the effect of
wormbholes.

In sect. 2 we define the matrix element that we must calculate using a semiclassi-
cal approximation to the path integral. In order to do so we need to know the
wormhole wave functions and they are obtained in sect. 3. They are solutions to
the Wheeler-DeWitt equation, with boundary conditions such that they corre-
spond to asymptotically flat euclidean geometries. This is in contradistinction to
the cosmological case where solutions corresponding to the no-boundary proposal
are sought (see ref. [8]). We then calculate the required matrix element in sect. 4.
We derive in sect. 5 the same matrix element but from an effective interaction in
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flat space-time. We conclude in sect. 6 that an interaction of the form C,, ,,C*"*°
reproduces the effect of wormholes. We have also included two appendices
describing the harmonics, due to Dowker [9], used to expand tensorial fields on the
three-sphere. They are different from the well-known Lifschitz harmonics but they
possess a simple transformation rule under rotation of the three-sphere. They are
introduced in appendix A and their relation to the Lifschitz ones is demonstrated
in appendix B.

2. The matrix element

In this section we describe the transition amplitude between two asymptotically
flat universes when a wormhole is present. The process considered is the creation
of a graviton at a point x, and its annihilation at x, in the asymptotically flat
region. Without the baby universe this would give the usual Feynman Green
function. With the baby universe this will be modified by the possibility of an
exchange of gravitons, i.e. the baby universe can absorb a graviton and emit one.

The effect of wormholes can be calculated from a two-point function using the
euclidean path integral for quantum gravity. It can be written as

Ol (1) o (22)1 9D = [ [y W (k) [ Al V(3 )Ry (x2) €710, (21)

where & is the class of four-geometries which are asymptotically flat (four-dimen-
sionally) and have a compact inner boundary S,, on which the induced metric has
the specified value h;;. This sum is weighted by the exponent1a1 of the euclidean
action /. We put hats on hw, the graviton field, to distinguish it from 4 ; which
describes the baby universe. The induced metric is then integrated over, weighted
by ¥(h,;), a wormhole wave function.

This is interpreted as the amplitude for a graviton to propagate from x, to x, in
asymptotically flat space-time whilst a baby universe whose quantum state is ¥
branches off.

The matrix element (2.1) will be evaluated using a semiclassical approximation
but first we need to describe the wormhole wave functions ¥(k,;) in more detail.

3. The wormhole wave functions

Wormbhole wave functions, being the quantum states of closed universes satisfy
the Wheeler—-DeWitt equation, the quantised hamiltonian constraint of general
relativity, with certain boundary conditions.

The action for Einstein gravity is given by

1——(/d4fo+2f d*xvh (K—K°) (3.1)
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where K is the trace of the extrinsic curvature of the boundary and K° is the trace
of the extrinsic curvature of the boundary when (asymptotically) isometrically
embedded in flat space [10,11]. This latter term is necessary when asymptotically
flat spaces are considered in order that the action of the whole of flat space-time
be zero.

Writing the line element

ds?= —(NZ—N‘M)dtZ—Zde‘dt+h,.jdxidx" (3.2)
and defining the canonical momenta as

4 _-6._? (3.3)
Tt = —, .
oh;

the hamiltonian H = N,H'+ NH® can be obtained. The classical equations of
motion for N, and_N lead to the momentum constraints

N Hi=mz' ;=0 (3.4)

and time reparametrisation constraint
H°=m;2Gijk,1r‘j1T"’—m%h'/“R=0, (3.5)

where G, = 3h ™" 2(hyhy + hyhy — hihy).

On quantisation of this theory these classical constraints are translated into
constraints on the physical state space. One way to realise them is to take wave
functionals of the canonical variables, (A, j), and impose the (functional) differen-
tial equations

v 3
(a—hi;).]‘—o, (3.6)

52
my?G,p———— —msh'/*°R

i v=0, 3.7
ijki Shij 5hkl ( )

obtained by making the replacement 7/ —> —i§/8h;; in eqgs. (3.4) and (3.5). Eq.
(3.7) is known as the Wheeler—-DeWitt equation. We discuss the question of
operator ordering ambiguities later in this section.

The Wheeler-DeWitt equation is a differential equation on an infinite-dimen-
sional manifold and is rather difficult to solve exactly. However, we can get an idea
of some of its solutions by expanding the gravitational field in a finite-dimensional
part that can be treated exactly and some small perturbations around it. We will
consider baby universes that are perturbations of the three-sphere. This can be
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done [12,13] by expanding the metric (3.2) as
N=N0(t)a(t)(1 +gJNM(t) 9IMN(g))a

N=a(t)| EM(YiZi(e)+ T fi“}"(t)Y,l,ﬁL(g))wf"(g)’
J

JL—=J] =1

hy=0%a*(1)(02; +¢;), (3.8)

where £2;; is the round metric on S* and a point on S* is written as an element of
SUQ2), g (see appendix A). The {Y‘ L1 [9] are the spin-1 hyperspherical harmon-
ics on S* and {w™} are a basis of left invariant one-forms. The {2’,/V} are the
elements of the spin-/ irreducible representation matrices of SU(2) Wthh, by the
Peter-Weyl theorem, form a complete basis for the expansion of scalar fields
on S

The perturbation of the three-metric, ¢, is expanded,

lj’

= Zj:( n )‘/ZaJNM(t)QJMN(g)+wm.-(8)w”j(g)(’; riz ’11)5/,, (3.9)

where
32 (n2—4 i
€4 2(5 3(("" ))) bIM(1) Y35 (8)
+ T (B(n2-9) e PM()Y2LI(8)
J=L|=1
+ X aT'(B) P dM(rzLi(e), (3.10)
[JJ—L]=

and n=J+L +1 in each case. There is a correspondence, demonstrated in
appendix B, between the spin-2 hyperspherical spinor harmonics {Y“—J } [9] and
the more commonly used tensor harmonics of Lifschitz [14]. For [L — J l 2 they
correspond to the transverse traceless harmonics Gl,n=J+L+1,for |L-Jl=1
to the traceless harmonics 8/, n=J+L+1 constructed from the transverse
vector harmonics and for J=L to the traceless harmonics Pj, n=2J+1 con-
Structed from the scalar harmonics.

Since the metric perturbation is real we have conditions for each of the sets of
coefficients that the complex conjugate of any coefficient equals that coefficient

with all its indices -eversed in position (upstairs to downstairs or vice versa). Spin-J
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indices are raised and lowered using the spin-J metric, ¢’y = (=178, _5 =
¢™MN_according to ¢M = dyc’M and Vj, = ¢’y yV'N. The label J will be dropped
whenever it is clear what spin is involved.

We will often suppress the M, N indices on the coefficients in the expansion and
relabel

N N
8 M= 8En> kMM >k, a; y—4a,, n=2J+1;
M ., bMM b, o) c, d¥>d,, n=L+J+1.

(3.11)

Whenever these indices are suppressed in a summation, it is understood that they
are summed over as in this example:

2 __ Lt NM
dn - 2 dNM dL.I .
: NM

This ensures not only the reality of the sums but also their invariance under
rotations as is explained below.

From eq. (A.27) the transformation under rotations of each of the coefficients in
the expansion can be calculated. For example under g — £gm ! where £, € SU(2)

Ak~ (€) 270 () diig - (3.12)

In general, each index M transforms according to its spin J in the expected way.
An expression in which all the indices are summed over “one up and one down” is
invariant under rotations. '

Calculating the lagrangian and hamiltonian to second order in the perturbations
we find that N, and the {g,}, {k,} and {j,} are independent Lagrange multipliers

for the constraints [12],
[H o+ Y ("H" ,+VH", +SH" )| ¥ =0, (3.13a)
nWw=0, SH'W=0, YH!¥=0, (3.13b-d)

respectively. The subscripts 0, 1,2 denote the orders of the quantity in the pertur-

bations; the expansion coefficients and their canonical momenta are denoted by

m,, etc. Eq. (3.13a) is the homogeneous part of H, ¥ =0. H | is its leading part,
1 2

=—\m, —a

H, , 2a \Ta 2). (3.14)

T.V.S" . are terms of second order in the scalar perturbations (a,, b,, 7,, T ),
vector perturbations (c,,,'n-c") and tensbr perturbations (d,,, 7, ) respectively. Eq.
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(3.13b) is the inhomogeneous part of H , ¥ =0. Egs. (3.13c) and (3.13d) are the
scalar and vector parts of H¥ =0.
The constraints (3.13b-d) are explicitly [12, 13]

9 3 ]
_ 1 2 _ 2 _ _ -
[ P +3{(n* = a, + (n 4)b,,}aaa.11f 0,

n

da, b, "on?-1 da |
i 4(n*—-4 a-q’ 3.15
—'a—"+ (n - )C,,aa*a-_ =(, ( )

where we have made the representations m,, — —id/da, etc. It is possible to solve
these equations [13] by setting

¥(a,a,,b,,c,,d,)="¥(a,d,) (3.16a)

for

4)
D

(n* -
E=a(1+%E(n2—4)(a,,+b,,)2+%Zaf,—ZZ 5 bI-23) (n*-4)c:-2Y d?|,
n n n (n - n n

(3.16b)

where the coefficients are summed in a covariant manner and the sums over n
include summing the two different possibilities for (L, J) where these exist for a
given n. The inclusion of the last term is not necessary to solve the constraints but
it simplifies eq. (3.13a), the approximation Wheeler-DeWitt equation, consider-
ably. Indeed we find that, in terms of @ and d,, it reduces to [13]

[(—?2——52—/\) - Z(i—n2d3+/\,,)

P Ny ¥(a,d,) =0 (3.17)

for a particular choice of the factor ordering. The constants A and A, depend on
that factor ordering and we discuss them below. The coefficients a,, b, and c, are
gauge degrees of freedom and the d, are the physical, graviton modes.

It seems that the results of our calculation might depend crucially on the choice
of factor ordering in (3.17). The choice (3.17) is indeed made to simplify
Mmatters — the Wheeler-DeWitt operator becomes a sum of simple harmonic
oscillator (SHO) operators. But it turns out that other factor orderings may do just
as well as long as we choose an inner product for the wave functions with respect
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to which the operator is self-adjoint. All we require is a set of wave functions that
are orthogonal and labelled by the integers, which label is to be interpreted as the
number of gravitons in the wormhole. We choose A and A, so that the ground-state
energy of each oscillator is subtracted.

An interesting feature of eq. (3.17) is that it is identical to the approximate
Wheeler-DeWitt equation in the case of the conformal scalar [2] or electromag-
netic field [7]. It is at first sight surprising that pure gravity gives the same equation
because it is not in general conformally invariant. However, it can be shown that
for the particular case where only linear gravitons (and possibly conformal matter)
are included, the effective energy-momentum tensor for the gravitons is trace free,
which implies conformal invariance. Moreover, the absence of graviton creation in
a radiation dominated Friedmann—Robertson-Walker universe is related to this
conformal invariance [15].

We see from eq. (3.17) that the wormhole wave functions will be sums of
products of SHO eigenfunctions — one for the scale factor, a, and one for each
mode. The boundary conditions conjectured in ref. [8] for wormhole wave func-
tions are satisfied: they die off at large a and are regular at a = 0.

There is, however, a question remaining which is related to the symmetry of the
underlying minisuperspace model. We have chosen to expand our fields around a
background that is SO(4) invariant. The wave functions we have found ought to be
invariant under the action of SO(4). That is, under transformations (3.12) the wave
functions should remain the same or at most change by a phase. This is clearly
required since the rotated coefficients describe exactly the same field configuration
on S3. One way of achieving the desired invariance is to postulate that the wave
functions are functions only of the invariant quantities df1,d>}) (only N and M
are summed over). We conjecture that this is exactly what would be enforced were
we to calculate the second-order momentum constraints that should be imposed
due to the linearisation instability of our background [16, 17]. Indeed, in the theory
of quantised gravitational perturbations around a background space-time which
admits Killing vectors and has closed space-like surfaces, these extra constraints
ensure that physical states are invariant under the symmetries generated by those
Killing vectors [17].

With the ansatz that the wave functions are functions only of the invariant
quantities quadratic in the coefficients, the solutions of eq. (3.17) turn out to be

¥(a,{d2))=H,(a)e ™ ? T1 ¥, (nd;?), (3.18)
. n,r= %t

where H(a) is the Hermite polynomial of order p and the part of the wave
function depending on the graviton modes is a product of zero angular momentum
eigenfunctions of level 2p] of the (n? — 4)-dimensional SHO. -4 =
(2L + 1X2J + 1) is the number of independent real components of {d,;"™}. We
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have explicitly labelled the two types of harmonic for each n:d;¥" for d N M,

and d;" for d_N.M and write d}? for d;*™d,,. We interpret 2p; (2p;) as
the number of gravitons of positive (negative) helicity of the mode n in the
wormhole and p=ZI, ,2np; — 1. In eq. (3.17), 3A, is the ground-state energy of
the mode n. There also exist solutions which are odd in \/;i_’,? . The interpretation
of these solutions is not clear. We would like to be able to say that they are
unphysical since we think of a state with an odd number of gravitons as having
non-zero spin and wormhole states should be rotationally invariant.

These wave functions are regular everywhere in configuration space and possess
a discrete spectrum. If the total energy of the graviton oscillators E is large, the
part of the wave function depending on a oscillates rapidly for a < V2E . In that
region the wave function will be of the form

¥(a)~C(e® +e™ ), (3.19)
where C is the prefactor and S obeys, approximately, the Hamilton-Jacobi
equation

a8 \? ,
(ﬁ) =2E-2a°, (3.20)

to which corresponds a family of classical lorentizian geometries
ds?= —de2+ (2E - (¢t —1,)")d0}. (3.21)

This is a Friedmann-Robertson-Walker (FRW) metric with radiation and maxi-
mum radius at ¢, — ;= V2E, the linear gravitons acting as radiation. Such
solutions have been investigated by Brill [18].

There exists a wormhole metric which is analytically continued from the FRW
radiation dominated universe

2
E/2
ds?=dr2+ (2E + 72)d02 = (1+ —~L—)3) dx2, (3.22)
x_xo

where dx? is the flat space-time metric. It describes a wormhole located at Xg-
However, the solution for the classical linear gravitons will not be regular at both
asymptotically flat ends. They obey an elliptic differential equation with a strictly
Positive potential and no regular solutions of such an equation exist on an
unbounded manifold. A similar conclusion can be reached for the electromagnetic
Case and the inhomogeneous part of a scalar or conformal scalar field. In the case
of the homogeneous part of a conformal scalar field [2,19] or an antisymmetric
three-index tensor field (3], the condition of strictly positive potential is not
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satisfied. There, the constant mode is investigated and the potential vanishes, thus
regular classical euclidean solutions can exist. As in ref. [20] we will take the point
of view here that it is the existence of regular solutions of the Wheeler—-DeWitt
equation which is important.

4. The semi-classical approximation

Having in hand the wave functions for wormholes, we can now evaluate the
matrix element (2.1). This is done for the case of a baby universe containing two
gravitons of positive or negative helicity in the lowest (n = 3) mode. This means
that we retain, in the expansion of the gravitational field, only the ten harmonics

Y220, N=12,+1,0,

Yoz, N=+2,+41,0. (4.1)
We relabel their coefficients D," and D_" respectively (D . for short). Here the
+ refers to the helicity state. ‘

The path integral (2.1) is evaluated uéing a saddle-point approximation. The
euclidean action is, up to second order in inhomogeneities and in terms of @
and d,,

- 2

a .

—_d,,) +n2d,2,], (4.2)
N

o3| (7]

where N = N(1 + L,d?). We drop the overbar on the a and tilde on the N. The
equations of motion are, for N =a,

i=a, D,=3D,. (4.3)

We must solve these equations for a =a, and D =D ,, on the inner boundary
(located at ¢; say) and ae™* — constant and D ,— 0 as t - . The solutions are

a=age'™, D,=D_je "W, (4.4)

This classical solution corresponds to flat space outside a three-sphere of radius
ay. The action of this configuration is 3(aj + 3°£D?).

There is a solution for each position of the wormhole, x, and the contribution
from each must be counted. For a particular x,, the gravitational perturbation
from flat space is

lAzfj“(x) = a-“age,’;",,(x)w,'-"(x - xo)w]'-’(x - xo) , (4.5)
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where

+0° pNO PON

(x_xu)z (x’"xn)z

€ , (4.6)

) 1 1
o(x) = (m P

(DN yzzn(x —x(,) D_/(\)/quz (x_ “xo-)
n 2)

and x — x, is the unit vector.

We must refer the components of the metric perturbation to a cartesian frame
before we can add up all the saddle-point contributions to eq. (2.1). Altogether we
have for the matrix element

~ad /2 a=3D2 /23D, /2 6 8
fda(, [TdD,¥(a, Dy)e "¢ v/ 1“2 A(ay)ajo

X [ dix Ad(y,, x) APy, x) A5 (s, 1) A2(y,, x)

(4 L T b

X (DY, 20080 + DY, 22 () )(D.4'Y,20(8,) + DY 22 (2,)).

mNQ mON nMQO noM

(4.7

where g, is the unit vector }T?x i=1,2 and 4(a,) is the determinant of small
fluctuations about the saddle point. A’:(y,,x) is the transformation matrix be-
tween the cartesian frame and the spherical basis on S* that can be deduced using
egs. (A.5), (A.6), (A.9) and (A.12). It is given by

A" (v, x) =™ (8)A (¥, X)

1 2 3 4
-2 _ -2 V2 -2 _
+1 pz Bn pz a, ,Faﬂ pz ﬁp
- —2i -2i 2i 2i (4.8)
0 p p —P p ’ '
p? P4 p? b3 2P 2 Pi
-v2 2 _ V2 _ iv2
-1 pz P pz @, 4, ]72 p
where
yw-x=p, lyy-xl=p, p+ip=a,, py+ip,=B,. (49)
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We now use the fact that the measure and wave function are rotationally
invariant. For example, consider the integral

[IaD,¥(ay, Dg)e 3P4 /2-30%/2 p Np M.

This must be an invariant tensor, symmetric on N and M. The only candidate is a
constant multiple of ¢™™, the spin-2 metric. We sce that the constant is non-zero if
¥ describes a wormhole with two positive helicity gravitons and zero if ¥
describes a wormhole with two negative helicity gravitons or more than two
gravitons of any helicity (due to orthogonality of the wormhole wave functions).
Similar results hold for the other terms. Together with the definitions of the
harmonics Y,? these give that for a wormhole containing two negative helicity
gravitons the matrix element is proportional to

[ d*x &24(y,, x)AL(y1, X) A5 (y2, 1) A2( ¥z, X)

1
1 1 m(f1 1 ~n
(1L L L 2 o
a8 2lc b 2GS0 Y
For a wormhole containing negative helicity gravitons it is proportional to
J d*x A2(y1, X)AE(y1, %) A5 (¥2, 1) A2( 2, X)
1 1 m/l1 1 n -
x( )( ).0272'" 25 '81)Cim , (411
4 5 2Ne p 2Tl T e (D

with an asymmetry appearing between the two cases. This can be traced back to
the fact that we expanded the fields in a left-invariant basis.
Using eq. (4.8), a lengthy calculation shows that eq. (4.10) reduces to

1
@ f d“x[;ﬁq—6 (P 48, 0,9,)(P 45,, —Paa,) + (P 48,, —1,4.) (P 43,,— P,4,)
- %(pzay.v —py.pv)(qzapa' - qpqo) + (Epuaﬂevvys + Euuaﬂepvys)paqpp'yqﬁ

- (ppq“sw”‘p +ppqveauaﬁ +p0qu£pvaﬁ + paquwaﬁ)paqﬁ

+ (Swsw"ﬁ + Sp,,e‘m"ﬁ + 8‘,”5‘,,,“3 + 6avep#“5)paqﬁ(p . q)] s (4.12)
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where p =y, —x and g =y, —x. Similarly, eq. (4.11) becomes

1
ajd4x[p6q6 (p 'qaiw —quu)(p'qﬁ,,,,—p,,q,,) + (p -qb‘,,p -pqu)(p 'q‘sua_pvqn)

- %(PZS,L,, —p,,P,,)(qZEW - qpq,,) + (spuaﬁeﬂya + eéuapepvyﬁ)Panqua

+(PpuEor * +8,0,80,°° + 0088 + 0,4, ) Pl

+ (5',#5,,,,“’3 + 5‘,,,50#"3 + Swep,,“ﬁ + aavsp#“ﬁ)paqﬂ(p q)] . (4.13)

The integrals differ in their last two lines but these terms vanish by symmetry
arguments. The rest of the integral looks as if it diverges at y; and y, since the
integrand ~ (x —y,)~*(x —y,) % However, if the Cauchy principal part is taken
it can be shown to be finite. Indeed, by rearranging the integrand into combina-
tions of 4,,(p) and A4,,(q) where 4,,(x)=4,8,(x"?), and using

- [d*xA4,,(p)4,,(q) = —27%3,3,8,3,{In(lu])) (4.14)

where v =y, —y, and

Al (x)= —4728%(x), (4.15)
we can do the integral and obtain for the matrix element
II-Wpa'( yl -.yZ) a 77-4{ - %auvapo’ + %(8#418!/0' + avps;w')} 64(”)
+ 7 = 5(8,,4,,(0) +8,,4,,(v))
+ —11_6(6p.pAmr(U) + 6VpA[ur(U) + 5,l.w"‘ll/p(v) + 8vo'Ap.p(U))}

- 7%{%9,9,9,0, In(lv])}. (4.16)

We must now find which effective interaction in flat space-time reproduces this
matrix element.



3. The effective interaction

The most general covariant effective interaction with four derivatives has the
form [21]

Z =aR*+BR, R* +YR,,,,R*"* +50R + €z,,,,, R* zR*7*P . (5.1)

But in four dimensions (euclidean), the Euler number is given by

1
X= 327‘_2 fRab A Rcdsade

1
T 322

f d*xg'*(R,,,, R*"*" — 4R, R*" + R?). (5.2)

This term has zero functional derivative with respect to g,, so we can always
rewrite the first.term in the integral in terms of the other two, thus renormalising
« and B in eq. (5.1). The term OR is manifestly a covariant total divergence and
can be neglected. Finally, the last term in eq. (5.1) also gives a topological
invariant, the Pontryagin number,

1
= b
P—E‘;E‘/Rab/\ka (5.3)
and so makes no contribution to the two-point function. The effective interaction
therefore reduces to
Z =aR*+ BR, R". (5.9
There are at least two special cases for « and B [22]. If 3a+B=0 the
interaction is conformally invariant up to a term proportional to the Euler density.
Thus, as far as perturbation theory is concerned this interaction term has the same
effect as the product of Weyl tensors C,,,,C*"*°.
The other interesting special case is 8 = 0, where the massive spin-2 excitations

disappear [21].
By writing the metric as

8= SW + h,w (5.5)
eq. (5.4) becomes

= 1BhP0%h 0 + (20 + 3B)AT’h — (4a + B)(Th) P o

+BhP g0k, " + (2a + BYhE, gh"%. 5. (5.6)
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The unperturbed Green function using the gauge-fixing term

— 4 (o Pho ., + hh o “F = ShOR) (5.7)

is

16mG Q.0 (5.8)

Ol (¥1)hpa(72)10) = —— (yi—v2)*

8,8, The first order contribution to the Green

where @ =8 6, +6, 06

wvpo wpvao no vp_
function from ¢ is

Iuvpa( Y y2) = f d4x<0|hy.u(yl)hpn( y2){%BhﬂBD2haB + (za + %B)thh

—(d4a+B)(Th)h* 5 Bh*P 5 O™ + (2a + BYhF, ,h°. ;}I0)

4G \? 5
=(7) [ 45| BOL 0, up(—47) 84 (x = y,) 84 (x = 32)
+ (4 + B) 0, 0pop (—4m7) 84 (x —y,) 8*(x )
— (46 + B)[ Qs Cprys( —47%) 8*(x = y,) A (x —y,)
+ Qe Qg — 4778 (x =) AP (x =y))|
~2B0,.,%5 0y —4m7)8%(x = ;) A (x — )
+2(2 + B) Qs Qs AP (X = y1) A7 (2 = y5) | (5.9)

This matrix element can be calculated:

T \? )
(E) I;wpcr(yl’ yZ) = (477-2) [23(6;“/8»0- + 6;.:.0'600) + 4(13‘“,600.] 34( U)

+(4‘n‘2)[—4(2a + 3)(5,‘,'(4 +8,,4,,)

po

+2B(8,, A +8,,A4,,+8,,4,,+ 3W,A#,,)]

vp“po

- 16m*(2a + B)9,4,9,9,{In(v)}, (5.10)

vopo
with 4 =4, ).

15



It is easy to verify that the result (4.16) is equivalent to (5.10) for 3@ = — 8 and
thus the effective interaction due to wormholes containing two gravitons can be
written as the square of the Weyl tensor with arbitrary amounts of the Euler
density, Pontryagin density and OR. It is rather surprising that the result in sect. 4
turns out to be in the same gauge as the one used here.

An interesting observation is that the terms in egs. (4.12) and (4.13) which have
opposite signs and vanish on integration are exactly those that appear when the
contribution to the two-point function from an effective interaction of the form
(5.3) is calculated. Though this is zero in the case of the two-point function, it will
be important for higher n-point functions. Indeed it seems that wormholes will

cause parity violating interactions such as RZR:"“,W R*'*¢  where *R+vPC
= Y uvaBppo
= 5€ R?’ g

6. Conclusion

We have investigated the effect of wormholes on linear gravitons by calculating
the Green function in the presence of a wormhole and two gravitons in an
asymptotically flat- region. We first derived the approximate Wheeler-DeWitt
equation for a FRW model filled with linear gravitons. We showed that there exist
solutions which represent quantum wormholes. The two point function was calcu-
lated by a semiclassical approximation to a euclidean path integral, using the
rotational invariance of the baby universe state. Finally we have shown that the
two-point function can be interpreted as the contribution to the flat space-time
Green function due to an effective interaction. Specifically, wormholes containing
two gravitons will induce an interaction of the form C,,,,C***?. It is interesting to
note that there will be no modification, in the linear approximation, to Newton’s
constant nor to the cosmological constant. The dependence of both these constants
on wormholes could come from renormalisation by matter loops which themselves
depend on the wormhole parameters.

This result is interesting in itself but we might speculate that this could have
important consequences for the initial state of the universe. Indeed Penrose [23]
some years ago proposed that the universe started in a state with zero Weyl tensor
which would imply a smooth initial state. If there exists an argument similar to the
one of Coleman to induce a particular value of the coupling constant for the Weyl
tensor, it might be possible to understand the origin of the large scale homogeneity
in the universe. This is under present investigation.

We would like to thank S.W. Hawking, K. Stelle and Claudia Yastremiz for
helpful conversations. R.L. would like to thank the Killam Fund at the University
of British Columbia and Peterhouse, Cambridge for financial support. This work
was supported in part by the DOE and by the NASA at Fermilab, grant no.
NAGW-1340 (H.F.D.).
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Appendix A

In this appendix we describe the hyperspherical harmonics due to Dowker [9]
used to expand spinor fields of arbitrary spin on the three-sphere. These are
harmonics whose transformation properties under rotations are transparent. The
more common harmonics on S*, those of Lifschitz [14], do not have such a direct
connection to the (double cover of the) symmetry group, SU(2) X SU(2).

The hyperspherical spinor harmonics are built using the fact that S? is the group
manifold of SU(2). We can thus associate a point x, on the sphere to an element
g of the group using the identification

X, tix, x3tix,

(X1, %y, X3, X4) = (A.1)

—xy+ix, X, —ix,]’

where the x, € R and are constrained by in = 1, thus defining a point on S*. We
could also have chosen the Euler angle parametrisation of SU(2):

X, +ix,=cosife eV x . tir,=sin}ge V"2, (A2)

We are interested in the group of symmetries of S* which is SO(4). This group is
isomorphic to SU(2) X SU(2)/Z,. Under a rotation,

g—~g =R(g)=én', £meSUQ2). (A3)

(Note that replacing £ = —¢ and n~' = —n ' gives rise to the same rotation and
hence the division by Z,.)
SO(4) is the group which leaves the quadratic form

in=l (A4)

invariant. It is generated by the six infinitesimal rotation operators [24]
{9 3
D‘w= —DW_L_= —1 x“b_ —“ng}— . ' (AS)
v n

By introducing the new operators
M =34(3(Dy+Dy) +£,( Dy + Dyp) +33(D 1y + D3))

N= %(XAI( D,y —Dy;) +X£,(D5y - D,,) +f3(D|4"D32))’ (A.6)

17



we obtain the following commutation relations:
[M,N]=0, (M, ,M,]=¢,, M., [N,,N,] =€, N,. (A7)

This clearly shows that locally the group is a product of two SU(2)’s. The group is
characterised by two Casimir operators

C,=(M?*+N?), C,=(M?-N?). (A.8)

In order to expand fields on the three-sphere we choose the left-invariant basis

of vectors
e, = —iN_, a=1,2,3 (A.9)

a a

which have the commutation relations
[ea’eb] = _eabcec' (A‘lo)

The dual basis.af one-forms, {w”}, gives a natural bi-invariant metric on S3:
g=5,0"®w’. (A.11)

This metric is related by a factor of 4 to the metric, {2, induced on S? by the flat
euclidean metric on R*:

4Q=g. (A.12)
We will also define a “spherical” basis {e,,},

i

et=iﬁ(e,¢iez), eg= —ie; (A.13)
and its dual
i
wi= ¢ﬁ(wliiw2), 0’ =iw’. (A.14)

(A corresponding basis for right invariant vectors {&,,} and one-forms {&,,} could
equally be used.)

Suppose we want to expand a co-tensor field T on S3. We may expand it using
the basis {w™) or {dx} (where {x’} are some coordinates on S?),

T(g) =T, 0"(g) ®...00"(g) =T, ;dx'(g) ®...@dx(g), (A1)

T,..(8)=(T(8):en(8) ®...®e,(8)) =T, je,...€/(8). (A.16)
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Under a general coordinate transformation g — g’, T; ; transforms as a co-tensor

ag!

agk
Ti...j(g)_’Ti...j(g)=@---EETL..1(€)’ (A.17)

o™, transforms as the components of three covector fields

dg’

w”(g) ~w(g) = %w’”j(g) (A.18)

and 7,, , transforms as a set of scalars.

However, when g — g’ is a symmetry transformation, i.e. g'=£gn !

we have
w"(g") =2 "(n)w"(8), (A.19)

remembering that {0”} are left-invariant. The 2! ™(n) are the spin-1 irrep
matrices for SU(2). This is analogous to Pauli’s theorem that there exists a 4 X 4
matrix, S(A), for every Lorentz transformation x* —x'* = A*  such that A* y" =
S(A) 'y*S(A). Then

T, (&)=T, .(8)o"(g)...0"(8"),
T, A8)=27(n)...2 ()T, .(8). (A.20)

Thus, by keeping the basis one-forms fixed under rotations (analogously, keeping
the gamma matrices fixed under Lorentz transformatiops) we can instead say that
the 7,, , transform as a tensor product of the (left spin-0, right spin-1) represen-
tation of the symmetry group SU(2) X SU(2). In the case where the tensor field is a
one-form then we say that T,, is a “right” spin-1 spinor. For a symmetric two index
tensor field the product representation decomposes to give “right” scalars and
spin-2 spinors. They can be obtained by contracting a 3J-symbol and two basis
one-forms as follows

(1}; ” i)“’m(g)@w”(g), j=2,0. (A21)

Notice that when j = 1 the antisymmetry of the 3J-symbol gives zero.
Such an object can be expanded in terms of the spin-j right spinor hyperspheri-
cal harmonics [9]

CL+1)(2J+1)
1672
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These Y'’s are eigenspinors of a complete set of commuting observables formed
from the generators of the symmetry group SU(2) X SU(2) acting on objects with
right spin-j. These are

j27L2,127J31L3 (A.23)

with eigenvalues j(j + 1), L(L + 1), J(J + 1), M, N respectively. j is right spin, L
is right orbital angular momentum, J =j + L is total right angular momentum and
L is left angular momentum (L?=L% so L? is not needed, though it also
commutes with everything). ‘

In appendix B we relate these harmonics with right spin-j = 0, 1,2 to the scalar,
vector and tensor harmonics of Lifschitz.

Spin+ indices are raised and lowered using a spin-j metric,

el = =(=1)"""8,, . (A.24)
according to -
" =¢,c™ and V, =c’, V" (A.25)
The Y'’s are normalised such that
f deT/l\'/"/(/fl'( g) Y,’,,,IV,{4( g€) =0,,10,,CNNCrM > (A.26)

where dg is the volume element of SU(2) from the metric g so that [dg= 1672
They also have the important property that under rotations they behave in the
following way:

YiLl(ggn ™y =27,"(n) 9"N(€) /M ()Y L (8) . (A2])

We could also have chosen a right-invariant basis of vectors and developed
left-spinor harmonics to expand out the corresponding spinor fields.

Appendix B

In this appendix we relate the spinor harmonics of appendix A to the usual
Lifschitz [14] tensor harmonics.

Other work dealing with harmonics relevant to Friedmann—Robertson-Walker
space-times include the ones of Gerlach and Sengupta [25], Gibbons [26], Hu [27],
and Jantzen [28].
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The Lifschitz harmonics are eigenfunctions of the laplacian based on the
following parametrisation of the three-sphere:

ds? = d%y + sin® x(d?0 + sin’ 9 d%¢) . (B.1)

They are Gegenbauer polynomials in y and the usual spherical harmonics in # and
¢. The Peter—Weyl theorem shows that the spin-0 spinor harmonics are linear
combinations of the Lifschitz scalar harmonics.

We now demonstrate the correspondence between the Lifschitz vector and
tensor harmonics and the spin-1 and 2 spinor harmonics. The Lifschitz vector
harmonics are {(S,)},,}, and {(P,)},,} which satisfy

ViSim = —(n?-2)5", V2P = —(n*-3)P™", (B.2)

where V? is the covariant vector laplacian on S? formed with the metric €.
The Lifschitz tensor harmonics are {(G;;)},,), {(S,)],,} and {(P,});,} which satisfy

VIGP = ~(n2 = 3)GP

ij

VIS0 = —(n? - 6) S

tj

V2P = —(n2 = T) P, (B.3)

where V2 is the covariant tensor laplacian on S°.

Claim 1. Each S{" is a linear combination of the o”Y L/ with L=J=
(n —1)/2 and each P!™ is a linear combination of the ™YL with [L —J| =1
and J+ L +1=n.

Proof. We first note that indices in the first half of the alphabet, up to and
including /, are with respect to a coordinate on S* whereas indices from m
onwards are with respect to the spherical basis.

V{o™ Y1} =027V, V{o™ Y}
= 0i{leyle 0 V) + e lom VY + 0™ VY (B4)

since V,w", = ¢, 'w”, where ¢, is the epsilon tensor of the metric g in the
coordinate basis. We obtain

Vi(w™ Y)) =™ (—2—4j L —4L%)Y, (B.5)

using the fact that V. acting on a spinor, such as Y,), is just a partial derivative, d,,
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and

IR 1

e, =iL,, [iP] = ~ie,

(B.6)

We have j-L = 1(J?—L?—j?) and, since the Y’s are eigenspinors of J L?
and j?, the eigenvalues of V2 are

—(L+J+1)°+3 whenL=J,

—(L+J+1)’+2 when|L-Jl=1.

(B.7)
Since both sets of harmonics are complete this completes the proof.
Claim 2. The G{", S{” and P{" are linear combinations of the
m nfm 1 1
w0 j( 2 m ,,)Yj.ku&
with |L —J| =2 ’IL JI =1 and L =J respectively and n=L +J+1 in each
case.
Proof. As before we calculate
m alm 1 1
Vz{w o) j(2 m n)Yil’;”(d} (B.8)
using
mnl® 1 1
(3w a)m0 (89
Lim 1 1 Lim 1 1
— m m . _ _ (2)
2(2 m n)ef"’ +2(2 m p)an ( )[ ] (B.10)

where [ 1‘2’] "is the spin-2 representatioﬁ matrix of the angular momentum opera-
tor j,. We find that

V2<w"',-w",-(’; ) ,ﬁ)&ik&}%"ﬂ'wﬂ('g ) ’11)[—6—4,'-1,—41,2]1/%“

_ mon(m 1 1
=[6—2J(J+1)—2L(L+1)]w ,w,-(z ” ,,)Yifu'r
(B.11)
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TasLE B.1
Relations between scalar, vector and tensor harmonics of Lifschitz and spin-0, -1 and -2 spinor
harmonics. The correspondence is that each Lifschitz harmonic is a linear combination of the
quantities involving spinor harmonics opposite to it in the table

Harmonics Lifschitz Spinor
Scalar o YoRn n=2K+1
oY 1KK~1
! N M
Vector (transverse) (S50 m n=2K
myl K- 1K
w ‘Ym N M
Vector (scalar derived) (P, w’",-Y,LI'f“'\fI n=2K+1
wlofm 1 lyzk-2K
. i“i\2 A B}] m N M
Tensor (transverse traceless) (G5 Mo n=2K-1
w"w”-("’ 1 1)Y2KI<—2
2 A B mN M
a_gfm 1 1\y2K-1K
) ) wiw f( 2 A B)Ym N M
Tensor (vector derived) S5 n=2K
wA_wH.(m 1 1)Y2KK-1
N2 A B mN M
: n / m 1 1}y2KkK -
Tensor (scalar derived) (P w ’,w"j( s A B)YmNM n=2K+1
Tensor (trace) QM wi0lic, BY:;IISJ/IEI n=2K+1
The eigenvalues are -
2
-(L+J+1)"+3 when |L —-J| =2,
2
~(L+J+1)"+6 when|L—-J]=1,
~(L+J+1)°+7 when L+J. (B.12)

This verifies the correspondence.
The comparison between Lifschitz and spinor harmonics for the scalar, vector
and tensor harmonics is summarised in table B.1.
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